Reflection Document

The robbieNg experiences of

the project team.

LETOP: #<naam> is gebruikt zodat mensen nog wat

Kunnen toevoegen!!!!!

Bijv. Als rik iets kan toevoegen, moet hij zoeken

Naar #rik

Index

21.
Preface

2.
Updating the world Gui
2
3.
Knowledge modeling
2
4.
Circulating Messages
3
5.
Consistency between model and implementation
3
6.
Rules and Properties of the Model mixture
3
7.
Working in a self-managing team
3
8.
Differences between a self-managing team, and a normal team.
4
9.
Better meetings
4
10.
Underestimation of rules
4
11.
Complexity because of Model – Observer pattern
4
12.
Getting information from other objects
5
13.
Using the Jess engine
5
14.
Putting up the rule bases
5
15.
Less steering from teacher
5
16.
Version Control
5
17.
Conclusion
5

1. Preface

This document contains most of the problems we've encountered while working at the RobbieNG project. Each chapter describes the situation, and tells what we did with it.

2. Updating the world Gui

Situation:
Every time one robot changes his position the whole screen of the world is updated.

Results in:
Very big delay in the world-server because the screen update costs too much time.

Described by:
Julien Moorrees (1019114)

Solution / Workaround:

The update of the screen was done, only at that part that needed to be updated. Every time the position of a robot changed, the old position was removed from the world, and the new position was drawn there.

The objects in the world didn’t need to be updated every time, but only sometimes. Therefor the walls were updated after app. 400 updates.

3. Knowledge modeling

Situation:
How do we model knowledge.

Described by:
Julien Moorrees (1019114) Martijn Lindhout

Solution / Workaround:

Julien Moorrees:

We first searched on the internet, and found out that there wasn't very much too find about modeling knowledge. We arranged an appointment with mr. Plessius. He told us, that there was an 3th compartment in uml, where knowledge could be put in the model. We've decided to create a new model. The knowledge model.

Martijn Lindhout:

The problem with our Rational Rose model was that there’s no possibility to include information about the knowledge or intelligence which is present in our robot. We first searched many pages on the internet, but no unambiguous solution was found. Next, we contacted mr. H. Plesius, who as much experience in modeling knowledge. He told us there;s no universal way to model this information. At Cibit, the former knowledge center of the Hogeschool van Utrecht, they use a third compartment in the UML diagram and store intelligence therein.

Unfortunately, our model is so extensive that there’s no place to model more information then what’s already in place. So, we decide to uncouple the intelligence from our model. Doing so, we get two models, the implementation model and the logical model.

In the implementation model, you could see al information about methods and attributes of the different classes. On the other hand, in the logical mode, you find all intelligence that reside our robot. In the rule files we have constants and ruls. Mapping this to a Rational Rose model, constants are attributes (and thus appear in the attribute compartment) and ruls are methods (appearing in the method compartment).

(#hugo)

4. Circulating Messages

Situation:
Feedback can occur when objects communicate only through the model-observer mechanism. Example: iDriver is interested in the messages from leftCollisionDetector. iDriver and iRobot are interested in messages from each other. leftCollisionDetector notifies iDriver with the message “LEFTCOLLISION”. When iDriver receives “LEFTCOLLISION” he notifies all objects which are interested in it with “LEFTCOLLISION”. Thus iRobot receives “LEFTCOLLISION”. iRobot then sends “LEFTCOLLISION” to all objects which are interested in it. And so iDriver receives again the message “LEFTCOLLISION”. This will go on for ever (or until a stack overflow occurs).

Described by: #sander

Solution / workaround: A solution is to include the name of the sending object in the message, or find another way to make the message unique. Unfortunately, this damages the componentbased-ness of the system.

5. Consistency between model and implementation

Situation:
Keeping the model consistent with the implementation.

Results in:
Very much work to check if the model is consistent with the implementation.

Described by:
#marcel

Solution / Workaround:

#marcel

6. Rules and Properties of the Model mixture

Situation:
Properties of the model are easily confused with rules. This is because often model properties are implemented in a rulebase, when that is the easiest way to implement them. An example of a model property is: “when the water cooks the water has to start bubbling”. An example of a rule is: “when the water starts bubbling the heater must be stopped”.

Results in:
An unclear model.

Described by:
#sander

Solution / Workaround:
It is not bad to implement a model property in a rulebase, if it is clearly marked as a model property.

#sander

7. Working in a self-managing team

Situation:
Our project group was working in a self managing team.

Results in:
No project leader. Team members are correcting themselves.

Described by:
Julien Moorrees (1019114)

At first it was very hard to divide the tasks. It was not very clear to us what we needed to do, because we had some troubles defining a goal for the project. When we divided the team into 3 groups, it really started to work. These 3 groups knew what they had to do, and all groups discussed with each other. This gave us all a broader perspective on the things, because the other groups had a fresher look on things.

8. Differences between a self-managing team, and a normal team.

Situation:
The working method is different between these two teams.

Results in:
Other working load, more efficiency,

Described by:
Julien Moorrees (1019114)

A normal team has one leader. The leader corrects the team, and shows them the directions to follow. If the project fails, the leader is responsible.

A self-managing team has no leader. Every team member is responsible for the whole project. If one of the members got stuck, the others help him/her. In a self-managing team, everybody has his/her own responsibilities. The other team members make sure that every member of the team carry out their responsibilities. And if needed they correct them.

9. Better meetings

Situation:
We needed more structure in the meetings we had.

Results in:
Inefficient meetings taking more time then necessary.

Described by:
Julien Moorrees (1019114)

Our meetings didn’t had any structure. We just said what was on our heart, and that’s it. In spite of that, our meetings mostly went well. But sometimes the meetings went out of hand. The opinions of some of the members were different then the opinions of the other members. The way we solved these differences were not always on a friendly manner.

Solution / Workaround:

Bring more structure in the meetings. Try to make someone responsible for the course of the meetings. If it seems to get out of hand, he can intervene. Before a meeting starts, there needs to be some sort of agenda, so everyone is prepared before the meeting.

10. Underestimation of rules

Situation:
The Jess engine in the project is steered by rules. In order to let this work good, a lot of rules had to be considered.

Results in:

Described by:
Rik de Groot and Sebastiaan Overdijk.

Solution / Workaround:

Making rules isn’t as easy as many of us thought it would be. Sometimes there are more rules needed then assumed. The extra rules are needed when there is communication with other intelligent objects.

11. Getting information from other objects

Situation:
Each object needs to communicate with other objects in order to exchange information.

Results in:
Message passing system, as provided with Java, using the model/observer paradigm.

Described by:
#marcel / #sander

Solution / Workaround:

12. Using the Jess engine

Situation:
Before we could use the Jess engine a lot of research an experimenting had to be done.

Results in:
#rik / #sebastiaan / #sander

Described by:
#rik / #sebastiaan / #sander

Solution / Workaround:

#rik / #sebastiaan / #sander

13. Putting up the rule bases

Situation:
#rik / #sebastiaan / #sander

Results in:

Described by:

Solution / Workaround:

14. Less steering from teacher

Situation:
#marcel

Results in:

Described by:

Solution / Workaround:

15. Version Control

Situation:
We worked on a public network where all the members of the project, were accessing the same project-files.

Results in:
Two people editing the same files, copying back older files. Waiting on other people to finish their work, spending time on merging two versions of time.

Described by:
Sander Hartogensis and Rik de Groot

Solution / Workaround: Make clear to everyone on which files you are working. When someone else is working on a file you want to work on, see if there is other work you can do. It is also possible to work on a copy of the file and merge the results when you are ready, but that takes extra time and increases the chance that problems occur. The best solution is a version managementsystem, but at the Hogeschool van Utrecht there isn’t one available.

16. Conclusion

Julien Moorrees (1019114)

This project has been very educational to me. We have learned much more regarding the former robbie98 project. Some of the points I thought that are important.

· Modeling knowledge

· Splitting the world from the robots

· Jess-engine

· Code reverse-engineering

Sebastiaan Overdijk:

Although we had a bad start, I think that the project is succeeded. May be that we have learned more that we would have without this bad start. We learned of our own mistakes. After the bad start we divided the project team in three groups who all did their own part. After some time we collect the results of the three groups and put it together. Now we have an almost fully working Robbie system that can play Hunter.

Rik de Groot:

In the end the RobbieNG Project was succesfull although we had a bad start. The group was divided in three parts: Communication, Jess and Simulation. These groups could develop the parts parallel. We encountered a lot of problems during the design/development, but we have managed to fix all of them. The project was educational to me.

