TechnicalDoc.doc

06/21/99

[image: image1.png]Rules JessEngine Rete
Sensor 1 Object JessEngineAdaptor
Model
Observer
Model
Observer
1 Object JessEngineAdaptor
Rules JessEngineAdaptor Rete

1. Table of contents

31.
Preface

2.
General information
4
3.
The Robot
5
The WorldConnection
5
The Battery Simulation
5
Collisions
5
Thrust Simulation
5
4.
The World
6
Store objects in the world
6
Detect collisions
6
Maintain a reference point
7
Storing the world on and retrieving a world from disk
7
5.
The World IP Address Provider
8
6.
The RobotWorldObject
9
Logging on
9
Logging off
9
7.
The MessageParser
10
8.
Introduction to Jess
11
What is Jess?
11
What are Expert Systems?
11
What is CLIPS?
13
How Jess Works
13
9.
Starting with Jess
18
Interactive commandline interface
18
Functions
18
Variables
19
Deffunctions
19
Facts
20
Deffacts
20
Defrules
21
Defglobals
25
Error Reporting and Debugging
26
Calling Java Methods
28
10.
Implementation of RobbieNG
29
I_Object
29
JessEngine
30
11.
Technical problems
33
12.
Logical View
34
ThrustSimulation
34
CollisionDetectorSimulation
34
WorldKnowledge
34
World
35
WorldSimulation
35
WorldGUI
36
WorldObject
37
RobotWorldObject
38
FoodWorldObject
38
WallWorldObject
38
Robot
39
CollisionDetector
39
Thrust
39
WorldConnection
40
MessageParser
40
CommunicationPackage
41
RobotCommunicationSim
41
RobotToWorldConnection
41
RobotSimulation
41
Shape
42

Preface

This document contains technical information concerning the project RobbieNG, the sequel to Robbie’98.

In September 1998, we started with the analysis and development of software to be used in an intelligent and self-employed robot, called Robbie. In Februari 1999 this project has rounded up successfully and we decided to give it a sequal.

At the end of the first project, our robot has some basic intelligence, such as the abillity to drive forward and backward, turning and detecting collisions.

The second project focussed on giving the robot the intelligence to perform (several) tasks by itself. We have chosen to let the robots play Hunter And Prey.

General information

The robot is based on two simulations, the RobotSimulation and the WorldSimulation. Each of these simulations will be discussed in the following chapters. In each chapter we will explain the different classes we used for Robbie Next Generation. A complete class view can be found in Chapter Logical View.

For more information we refer to our website:

http://www.xs4all.nl/~synotix/robbieng
At the website the model we used for the simulations can be found. The model was created using Rational© Rose 98. For a better understanding of this document we advise the reader to download this model.

Rational© Rose 98 can be found at:

http://www.rational.com
The Robot

The actual robot contains two collision detectors, one on the left side and one on the right side. To simulate the collision detectors we had to create a collision detector simulation class, who simulates a collision.

The WorldConnection

The WorldConnection is used to communicate with the World. It sends messages to the World and receives messages from the World.

At startup, the WorldConnection broadcasts a request to find the World server. Furthermore, a WorldConnectionReceiver and a WorldConnectionMessageParser are created. The WorldConnectionReceiver listens to messages from the World. Once a message is received, the WorldConnectionMessageParser is notified. The WorldConnectionMessageParser removes the received message from the queue of the WorldConnectionReceiver and passes it to the WorldConnection.

The Battery Simulation

To simulate the battery of the robot, the class BatterySimulation is used. The battery has a certain maximum capacity at startup, and every 5 seconds the batterylevel is decreased. The Driver is notified of this decrease, and when the battery runs out, the robot cannot move anymore.

Collisions

The way we simulated collisions is as follows. When the World signals a collision (see Detect collisions), a message is sent by the RobotWorldObject to the corresponding client (the actual robot). This can either be a collision Left or a collision Right. This message is received by the WorldConnection, who triggers the correct collision detector (left or right). The I_Driver is also notified and the correct actions are taken.

Thrust Simulation

Our robot also needed a simulation for the Thrust. The ThrustSimulation is used to send messages to the World concerning the movement of the robot. For instance, when the robot needs to turn, the ThrustSimulation generates a turn-message and sends it to the World using the WorldConnection.

When a message is received by the WorldConnection from the World, and this message is reply to a movement message, for instance the robot moved 10 steps forward, the ThrustSimulation is notified of this movement. Upon these messages correct actions can be taken.

The ThrustSimulation also detects whether the engine is stuck or broke. Whenever this occurs, its observers are notified of this new fact and the correct actions are taken.

The World

To represent to actual world, we needed a simulation of this world. The world is a large rectangular space, surrounded by four walls. These walls prevent the robots from leaving the world. The world had to perform several tasks:

· Store objects in the world

· Detect collisions

· Maintain a reference point

· Storing the world on and retrieving a world from disk

Store objects in the world

The world keeps track of the different objects in the world. In our simulation we use two types of objects:

· ‘living’ objects (robots)

· ‘dead’ objects (e.g. walls, food)

Each object in the world has several properties. One of those properties is the shape of the object. We have defined three different shapes; Rectangle, Circle and Triangle. Other properties of objects in the world are their width and height, the color of the object, the direction they are heading and the position of the center of the object.

The GUI can be used to add and remove dead objects to the world.

Detect collisions

In real life, collisions occur automatically. A robot crashes into a wall and the collision detector of the robot will be trigged. Yet in the simulation we had to trigger the collision detector ourselves, because collisions are simulated. The way we solved this is as follows.

The robot that wants to move or turn sends a message to the corresponding RobotWorldObject in the simulation. Let’s assume it was a message to go forward 100 steps. The RobotWorldObject does not move 100 steps at once in the direction it is heading, but it moves with small intervals. After every interval the RobotWorldObject then signals the World to check whether or not a collision occurs at the new position. If indeed a collision occurs, the colliding objects are informed of the collision by the World. If not, the RobotWorldObject updates it’s position to the new position and tries to move with the same interval until the specified distance is reached or a collision occurs.

How can the World determine if a collision occurs? As mentioned earlier every object has a shape (see Store objects in the world). When the World is asked to check if the given object collides with another object in the world, the surrounding of the given object is traced. All other world objects present in the World are asked to check if the given point coincide with itself. If this is true, a collision is taking place.

After a collision has been detected, the colliding objects are informed. Dead objects simply ignore the collision, but the corresponding RobotWorldObjects of colliding robots send a collision message to the robot.

Since our robot consists of 2 collision detectors, one on the left side and one on the right side of the robot, we needed a mechanism to distinguish between a left collision and a right collision. Before sending a reply to the robot, we determine a left or right collision using a mathematical formula. Consequently, a left collision message or a right collision message is sent to the corresponding robot.

Maintain a reference point

The world keeps track of a so called reference point. This point is used to place new robots in the world. Since the robots do not know the actual position in the world during startup, we place every new robot on the reference point of the world. The reference point is placed in the center of the World and is represented by a red dot.

Storing the world on and retrieving a world from disk

Another task of the world is to store a world on disk. The complexity here was how to store all the dead objects (since robots are not saved). We used a well-known technique in Java called serialization of objects. This technique saves all the properties and the type of the serializable object to a file. In the same way, objects can be read from the file. Using this principle, we are able to save a world with its dead objects, and retrieve a world.

The World IP Address Provider

The robot clients do not know the location of the World server. To make the design more flexible, and to allow the World to be on any computer in the network, we implemented the World IP Address Provider (WIPAP). This WIPAP is started when the World is started. It listens to messages from clients and sends a response indicating where the World server is located. When a client is started, it starts to broadcast a message to all computers in the network using the UDP-protocol. When the WIPAP recieves the message, a reply is send back and the client knows the IP-address of the World Server. From this point, al communication between robot and the World is done using the MessageParser (see The MessageParser).

 The RobotWorldObject

The robot in the simulation is represented by a RobotWorldObject. A RobotWorldObject has several properties, among which a position property. This position property is used to keep track of the position of the center of the robot in the world. Another property of the RobotWorldObject is the socket property. This socket property is used to communicate with the correct robot client.

Logging on

When a client is started, it automatically searches for the world server (see The World IP Address Provider). Once found, the client sends a message to the World server requesting to be added to the world. The World first checks whether the IP-number and port number are unique. Otherwise a distinction between two different robots cannot be made. Secondly, the name of the robot is checked. Duplicate names are not allowed. An error message is send if one of these tests fail. After this a new RobotWorldObject is created for the new robot and added to the world at the reference point (see Maintain a reference point). A reply is send to the client on successful logon. More important, a new RobotReceiver is started which continuously listens for client messages. When a message arrives, it is delivered to the MessageParser who examines the message and depending on which message arrived, delivers it to the corresponding RobotWorldObject. For example, when a message is received indicating a forward motion, the corresponding operation for moving forward of the correct RobotWorldObject is called.

Logging off

When a client is shutdown, the socket on the world side is automatically closed. This causes a so called exception in the RobotReceiver which removes the corresponding RobotWorldObject from the world.

The MessageParser

The MessageParser is used by the robot to communicate with the World. It is running at the World server, immediately after the World is started. The MessageParser starts a receive thread, who is listening to a specified portnumber for requests from robots to be added to the World. When a request is received, some checks are made to see if the robot is not already present in the World and it’s name is unique. After this, a new RobotWorldObject is created and a new RobotReceiver starts to listen to messages from the newly added robot. When a message arrives from the robot, the RobotReceiver delivers the message to the MessageParser who delivers it to the correct RobotWorldObject.

The MessageParser is also used by the RobotWorldObjects to send replies to their corresponding robots. For instance, when a collision occurs, the World signals the colliding objects. When the colliding object is a RobotWorldObject, the corresponding RobotWorldObject uses the MessageParser to send a message to its robot indicating the collision. Consequently, the robot can take action, for instance send a STOP message to stop the robot from moving. The RobotWorldObject also send messages indicating the distance moved or the amount of degrees turned.

Introduction to Jess

The robots of the RobbieNG project exist of Intelligent-Ojects. These Intelligent-Ojects contain a Jess engine. The Intelligent-Objects are connected bij MVC and form a RobbieNG-robot.

An example of an Intelligent object with the Jess engine:

[image: image2.png]Rules JessEngine Rete
Sensor 1 Object JessEngineAdaptor
Model
Observer
Model
Observer
1 Object JessEngineAdaptor
Rules JessEngineAdaptor Rete

In this example the sensor/detector will gather information (facts and states) from the the outside world. The rules in the Jess engine will evaluate the information.

The rules can cause sending a command/message to the Intellegent-Object.

The Intellegent-Object will send the message to his observers which can cause a new fact in the Object that receives the message.

What is Jess?

Jess is a tool for building a type of intelligent software called Expert Systems. An Expert System is a set of rules that can be repeatedly applied to a collection of facts about the world. Rules that apply are fired, or executed. Jess uses a special algorithm called Rete to match the rules to the facts. Rete makes Jess much faster than a simple set of cascading if.. then statements in a loop. Jess was originally conceived as a Java clone of CLIPS, but nowadays has many features that differentiate it from its parent.

What are Expert Systems?

Conventional programming languages, such as FORTRAN and C, are designed and optimized for the procedural manipulation of data (such as numbers and arrays). Humans, however, often solve complex problems using very abstract, symbolic approaches which are not well suited for implementation in conventional languages. Although abstract information can be modeled in these languages, considerable programming effort is required to transform the information to a format usable with procedural programming paradigms.

One of the results of research in the area of artificial intelligence has been the development of techniques which allow the modeling of information at higher levels of abstraction. These techniques are embodied in languages or tools which allow programs to be built that closely resemble human logic in their implementation and are therefore easier to develop and maintain. These programs, which emulate human expertise in well defined problem domains, are called expert systems. The availability of expert system tools, such as CLIPS, has greatly reduced the effort and cost involved in developing an expert system.

Rule-based programming is one of the most commonly used techniques for developing expert systems. In this programming paradigm, rules are used to represent heuristics, or "rules of thumb," which specify a set of actions to be performed for a given situation. A rule is composed of an if portion and a then portion. The if portion of a rule is a series of patterns which specify the facts (or data) which cause the rule to be applicable. The process of matching facts to patterns is called pattern matching. The expert system tool provides a mechanism, called the inference engine, which automatically matches facts against patterns and determines which rules are applicable. The if portion of a rule can actually be thought of as the whenever portion of a rule since pattern matching always occurs whenever changes are made to facts. The then portion of a rule is the set of actions to be executed when the rule is applicable. The actions of applicable rules are executed when the inference engine is instructed to begin execution. The inference engine selects a rule and then the actions of the selected rule are executed (which may affect the list of applicable rules by adding or removing facts). The inference engine then selects another rule and executes its actions. This process continues until no applicable rules remain.

What is CLIPS?

CLIPS is a productive development and delivery expert system tool which provides a complete environment for the construction of rule and/or object based expert systems. CLIPS is being used by numerous users throughout the public and private community including: all NASA sites and branches of the military, numerous federal bureaus, government contractors, universities, and many companies. The key features of CLIPS are:

· Knowledge Representation: CLIPS provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rules of thumb," which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or to create new components). The procedural programming capabilities provided by CLIPS are similar to capabilities found in languages such as C, Pascal, Ada, and LISP.

· Portability: CLIPS is written in C for portability and speed and has been installed on many different computers without code changes. Computers on which CLIPS has been tested include an IBM PC running DOS and Windows 95 and a Macintosh running MacOS and Mach. CLIPS can be ported to any system which has an ANSI compliant C compiler. CLIPS comes with all source code which can be modified or tailored to meet a user's specific needs.

· Integration/Extensibility: CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and ADA. CLIPS can be easily extended by a user through the use of several well-defined protocols.

· Interactive Development: The standard version of CLIPS provides an interactive, text oriented development environment, including debugging aids, on-line help, and an integrated editor. Interfaces providing features such as pulldown menus, integrated editors, and multiple windows have been developed for the Macintosh, Windows 95, and X Window environments.

· Verification/Validation: CLIPS includes a number of features to support the verification and validation of expert systems including support for modular design and partitioning of a knowledge base, static and dynamic constraint checking of slot values and function arguments, and semantic analysis of rule patterns to determine if inconsistencies could prevent a rule from firing or generate an error.

· Fully Documented: CLIPS comes with extensive documentation including a Reference Manual and a User's Guide.

How Jess Works

Note: The information in this Section is provided for the curious reader. An understanding of the Rete algorithm may be helpful in planning expert systems; an understanding of Jess's implementation probably will not. Feel free to skip this section and come back to it some other time. You should not take advantage of many of the Java classes mentioned in this section. They are internal implementation details and any Java code you write which uses them may well break each time a new version of Jess is released.

Jess is a rule-based expert system shell. In the simplest terms, this means that Jess's purpose it to continuously apply a set of if-then statements (rules) to a set of data (fact list). You define the rules that make up your own particular expert system. Jess rules look something like this:

 (defrule library-rule-1

 (book (name ?X) (status late) (borrower ?Y))

 (borrower (name ?Y) (address ?Z))

 =>

 (send-late-notice ?X ?Y ?Z))

Note that this syntax is identical to the syntax used by CLIPS. This rule might be translated into psueudo-English as follows:

 Library rule #1:

 If

 a late book exists, with name X, borrowed by someone named Y

 and

 that borrower's address is known to be Z

 then

 send a late notice to Y at Z about the book X.

The book and borrower entities would be found on the fact list. The fact list is therefore a kind of database of bits of factual knowledge about the world. The attributes (called slots) that things like books and borrowers are allowed to have are defined in statements called deftemplates. Actions like send-late-notice can be defined in user-written functions in the Jess language (deffunctions) or in Java (Userfunctions). For more information about the CLIPS rule syntax (and to work with Jess, you will certainly need to learn more!) refer to the previous section and to the CLIPS documentation mentioned earlier.

The typical expert system has a fixed set of rules while the fact list changes continuously. However, it is an empirical fact that, in most expert systems, much of the fact list is also fairly fixed from one rule operation to the next. Athough new facts arrive and old ones are removed at all times, the percentage of facts that change per unit time is generally fairly small. For this reason, the obvious implementation for the expert system shell is very inefficient. This obvious implementation would be to keep a list of the rules and continuously cycle through the list, checking each one's left-hand-side (LHS) against the fact list and executing the right-hand-side (RHS) of any rules that apply. This is inefficient because most of the tests made on each cycle will have the same results as on the previous iteration. However, since the fact list is stable, most of the tests will be repeated. You might call this the rules finding facts approach and its computational complexity is of the order of O(RF^P), where R is the number of rules, P is the average number of patterns per rule LHS, and F is the number of facts on the fact list. This escalates dramatically as the number of patterns per rule increases.

Jess instead uses a very efficient method known as the Rete (Latin for net) algorithm. The classic paper on the Rete algorithm ("Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Problem", Charles L. Forgy, Artificial Intelligence 19 (1982), 17-37) became the basis for a whole generation of fast expert system shells: OPS5, its descendant ART, and CLIPS. In the Rete algorithm, the inefficiency described above is alleviated (conceptually) by remembering past test results across iterations of the rule loop. Only new facts are tested against any rule LHSs. Additionally, as will be described below, new facts are tested against only the rule LHSs to which they are most likely to be relevant. As a result, the computational complexity per iteration drops to something more like O(RFP), or linear in the size of the fact base. Our discussion of the Rete algorithm is necessarily brief. The interested reader is referred to the Forgy paper or to Giarrantano and Riley, "Expert Systems: Principles and Programming", Second Edition, PWS Publishing (Boston, 1993) for a more detailed treatment.

The Rete algorithm is implemented by building a network of nodes, each of which represents one or more tests found on a rule LHS. Facts that are being added to or removed from the fact list are processed by this network of nodes. At the bottom of the network are nodes representing individual rules. When a set of facts filters all the way down to the bottom of the network, it has passed all the tests on the LHS of a particular rule and this set becomes an activation. The associated rule may have its RHS executed (fired) if the activation is not invalidated first by the removal of one or more facts from its activation set.

Within the network itself there are broadly two kinds of nodes: one-input and two-input nodes. One-input nodes perform tests on individual facts, while two-input nodes perform tests across facts and perform the grouping function. Subtypes of these two classes of node are also used and there are also auxilliary types such as the terminal nodes mentioned above.

An example is often useful at this point. The following rules:

 (defrule example-2 (defrule example-3

 (x) (x)

 (y) (y)

 (z) =>)

 =>)

might be compiled into the following network:

 +----+ +----+ +----+ +----+ +----+ (one-input

 | x? | | y? | | z? | | x? | | y? | nodes)

 +----+ +----+ +----+ +----+ +----+

 \ / | \ /

 +------------+ | +------------+

 | + | | | + |

 +------------+ | +------------+

 \ | | (two-input

 +------------+ | nodes)

 | + | |

 +------------+ |

 | |

 +----------------+ +----------------+

 | fire example-2 | | fire example-3 |(terminals)

 +----------------+ +----------------+

The nodes marked x?, etc., test if a fact contains the given data, while the nodes marked + remember all facts and fire whenever they've received data from both their left and right inputs. To run the network, Jess presents new facts to each node at the top of the network as they added to the fact list. Each node takes input from the top and sends its output downwards. A single input node generally receives a fact from above, applies a test to it, and, if the test passes, sends the fact downward to the next node. If the test fails, the one-input nodes simply do nothing. The two-input nodes have to integrate facts from their left and right inputs, and in support of this, their behavior must be more complex. First, note that any facts that reach the top of a two-input node could potentially contribute to an activation: they pass all tests that can be applied to single facts. The two input nodes therefore must remember all facts that are presented to them, and attempt to group facts arriving on their left inputs with facts arriving on their right inputs to make up complete activation sets. A two-input node therefore has a left memory and a right memory. It is here in these memories that the inefficiency described above is avoided. A convenient distinction is to divide the network into two logical components: the single-input nodes comprise the pattern network, while the two-input nodes make up the join network.

There are two simple optimizations that can make Rete even better, The first is to share nodes in the pattern network. In the network above, there are five nodes across the top, although only three are distinct. We can modify the network to share these nodes across the two rules (the arrows coming out of the top of the x? and y? nodes are outputs):

 +--------------------------+

 ^ +-------------+ |

 | ^ | |

 +----+ +----+ +----+ | |

 | x? | | y? | | z? | | |

 +----+ +----+ +----+ | |

 / / / | |

 +------------+ / +---/ +------------+

 | + |-+ / | + |

 +------------+ / +------------+

 \ / |

 +------------+ |

 | + | |

 +------------+ |

 | |

 +----------------+ +----------------+

 | fire example-2 | | fire example-3 |

 +----------------+ +----------------+

But that's not all the redundancy in the original network. Now we see that there is one join node that is performing exactly the same function (integrating x,y pairs) in both rules, and we can share that also:

 +----+ +----+ +----+

 | x? | | y? | | z? |

 +----+ +----+ +----+

 / / /

 +------------+ / +---/

 | + |-+ /

 +------------+ /

 | \ /

 | +------------+

 | | + |

 | +------------+

 | |

 | +----------------+

 | | fire example-2 |

 | +----------------+

 +----------------+

 | fire example-3 |

 +----------------+

The pattern and join networks are collectively only half the size they were originally. This kind of sharing comes up very frequently in real systems and is a significant performance booster!

You can see the amount of sharing in a Jess network by using the watch compilations command. When a rule is compiled and this command has been previously executed, Jess prints a string of characters something like this, which is the actual output from compiling rule example-2, above:

 example-2: +1+1+1+1+1+1+2+2+t

Each time +1 appears in this string, a new one-input node is created. +2 indicates a new two-input node. Now watch what happens when we compile example-3:

 example-3: =1=1=1=1=2+t

Here we see that =1 is printed whenever a pre-existing one-input node is shared; =2 is printed when a two-input node is shared. +t represents the terminal nodes being created. (Note that the number of single-input nodes is larger than expected. Jess creates separate nodes that test for the head of each pattern and its length, rather than doing both of these tests in one node, as we implicitly do in our graphical example.) No new nodes are created for rule example-3. Jess shares existing nodes very efficiently in this case.

Jess's Rete implementation is very literal. Different types of network nodes are represented by various subclasses of the Java class jess.Node: Node1, Node2, NodeNot2, NodeTest, and NodeTerm. The Node1 class is further specialized because it contains a command member which causes it to act differently depending on the tests or functions it needs to perform. For example, there are specializations of Node1 which test the first field (called the head) of a fact, test the number of fields of a fact, test single slots within a fact, and compare two slots within a fact. There are further variations which participate in the handling of multifields and multislots. The Jess language code is parsed by the class jess.Jesp, while the actual network is assembled by code in the class jess.ReteCompiler. The execution of the network is handled by the class Rete. The jess.Main class itself is really just a small demonstration driver for the jess package, in which all of the interesting work is done.

The view command is a graphical viewer for the Rete network itself; I have used this as a debugging tool for Jess, but it may have educational value for others, and it may help you to design more efficient systems of rules in Jess. Issuing the view command after entering the rules example-2 and example-3 produces a very good facsimile of the drawing (although it correctly shows the larger number of one-input nodes). The various nodes are color-coded according to their roles in the network; Node1 nodes are red; Node2 nodes are green; NodeNot2 nodes are yellow; and NodeTerm nodes are blue. Passing the mouse over a node displays information about the node and the tests it contains; double-clicking on a node brings up a dialog box containing the same information (for join nodes, the memory contents are also displayed, while for NodeTerm nodes, a pretty-print representation of the the rule is shown). See the description of the view function for important information before using it.

Starting with Jess

The use of Jess can be difficult. This chapter explains Jess step by step.

Interactive commandline interface

Jess has an interactive command-line interface. Just type java jess.Main to get a Jess> prompt. To execute a file of CLIPS code from the command prompt, use the batch command:

 Jess> (batch myfile.clp)

 (lots of output)
You can use the Jess system command to invoke an editor from the Jess command line to edit a file of Jess code before reading it in with batch. system also helps to allow non-Java programmers to integrate Jess with other applications. Given that you have an editor named notepad on your system, try:

 Jess> (system notepad README &)

 TRUE
The & character makes the editor run in the background. Omitting it will keep the system command from returning until the called program exits. The class jess.Console is a graphical verison of the Jess command-line interface. Output appears in a scrolling window. Type java jess.Console to try it.

Functions

Jess contains a large number of built-in functions that you may call. More functions are provided as extensions. You can write your own functions in the Jess language (see Deffunctions) or in Java (see Extending Jess with Java).

Function calls in Jess use a prefix notation. A list whose head is an atom that is the name of an existing function can be evaluated as an expression. For example, an expression that uses the + function to add the numbers 2 and 3 would be written (+ 2 3). When evaluated, the value of this expression is the number 5 (not a list containing the single element 5!). In general, expressions are recognized as such and evaluated in context when appropriate. You can type expressions at the Jess> prompt. Jess evaluates the expression and prints the result:

 Jess> (+ 2 3)

 5

 Jess> (+ (+ 2 3) (* 3 3))

 14
Note that arithmetic results may be returned as floating-point numbers or as integers, depending on the types of the arguments.

Jess implements only a small subset of CLIPS functions as intrinsic functions that are built into Jess and cannot be removed. All of these have been designed to function as much like their CLIPS counterparts as possible. On the other hand, I'm supplying implementations for many more CLIPS functions, and lots of functionality specific to Jess, as 'Userfunctions' - external functions written in Java that you can plug into Jess. All of the included Userfunctions are installed into the command-line version of Jess by default; you can pick and choose in your own applications. In applets, in particular, you may want to include only the Userfunctions you need, to keep the size of the applet down. (see Extending Jess with Java for information about doing this.)

All these functions are described in detail in the Jess Function Guide. Note that the distinction between intrinsic functions and Userfunctions is mostly an academic one; intrinsic functions are all written as Java classes that implement the same Userfunction interface that user-supplied classes do. The only real difference is whether Jess will start up without them; the intrinsics are required because they're loaded in by code in the jess.Funcall class. To find out if a function is intrinsic, see its entry in the Function Guide below.

Variables

Programming variables in Jess are atoms that begin with the question mark (?) character. The question mark is part of the variable's name. A normal variable can refer to a single atom, number, or string. A variable whose first character is instead a $ (for example, $?X) is a multivariable, which can refer to a special kind of list called multifield. You assign to any variable using the bind function:

 (bind ?x "The value")

Multifields are generally created using special multifield functions like create$ and can then be bound to multivariables:

 (bind $?grocery-list (create$ eggs bread milk))

Variables need not (and cannot) be declared before their first use (except for Defglobals).

Deffunctions

The deffunction construct is used to define functions that you can then call from Jess. A deffunction construct looks like this:

 (deffunction <function-name> [<doc-comment>] (<parameter>*)

 <expr>*

 [<return-specifier>])

The <function-name> must be an atom. Each <parameter> must be a variable name (all functions use pass-by-value semantics). The optional <doc-comment> is a double-quoted string that can describe the purpose of the function. There may be an arbitrary number of <expr> expressions. The optional <return-specifier> gives the return value of the function. It can either be an explicit use of the return function or it can be any value or expression. Control flow in deffunctions is achieved via the special control-flow expressions foreach, if, and while. The following is a deffunction that returns the numerically larger of its two numeric arguments:

 (deffunction max (?a ?b)

 (if (> ?a ?b) then

 (return ?a)

 else

 (return ?b)))

Note that this could have also been written as:

 (deffunction max (?a ?b)

 (if (> ?a ?b) then

 ?a

 else

 ?b))

Facts

Jess maintains a list of facts or information about the current state of the system. Facts may be ordered or unordered. Ordered facts are merely lists whose head must be an atom:

 (temperature 98.6)

 (shopping-list bread milk paper-towels)

 (start-processing)

Unordered facts are structured. They contain a definite set of slots which must be accessed by name. While ordered facts can be used without prior definition, unordered facts must be defined using the deftemplate construct (see Deftemplates).

Facts are placed on the fact list by the assert function. You can see the current fact list using the facts function. You can remove (retract) a fact from the fact list if you know its fact ID. For example:

 Jess> (assert (foo bar))

 <Fact-0>

 Jess> (facts)

 f-0 (foo bar)

 For a total of 1 facts.

 TRUE

 Jess> (retract 0)

 TRUE

 Jess> (facts)

 For a total of 0 facts.

 TRUE
Deffacts

The deffacts construct is a handy way to define a list of facts that should be made true when the Jess system is started or reset.

 (deffacts <deffacts-name>

 [<doc-comment>]

 <fact>+)

The primary purpose of the <deffacts-name> is documentation. A deffacts instance can contain any number of facts. Any unordered facts in a deffacts instance must have previously been defined via a deftemplate construct when the deffacts is parsed. The following is a valid deffacts construct:

 (deffacts automobiles

 (automobile (make Chrysler) (model LeBaron) (year 1997))

 (automobile (make Ford) (model Contour) (year 1996))

 (automobile (make Nash) (model Rambler) (year 1948)))

Defrules

The main purpose of an expert shell like Jess is to support the execution of rules. Rules in Jess are somewhat like the IF...THEN... statements of other programming languages. In operation, Jess constantly tests to see if any of the IFs become true, and executes the corresponding THENs. (Actually, it doesn't work quite this way, but this is a good way to imagine things. See How Jess Works for an explanation closer to the truth.) The intelligence embedded in an intelligent rule-based system is encoded in the rules. The defrule construct is used to define a rule to Jess:

 (defrule <defrule-name>

 [<doc-comment>]

 [<salience-declaration>]

 [[<pattern-binding> <-] <pattern>]*

 =>

 <action>*)

Basically, a rule consists of a list of patterns (the IF part on the rule's left-hand-side or LHS) and a list of actions (the THEN part on the rule's right-hand-side or RHS). The patterns are matched against the fact list. When facts are found that match all the patterns of a rule, the rule becomes activated, meaning it may be fired (have its actions executed).

Note: The patterns on rule LHSs are matched against the fact-list as if they were facts - they are NOT function calls! The following rule does NOT work:

 (defrule wrong-rule

 (eq (+ 2 2) 4)

 =>

 (printout t "Just as I thought, 2 + 2 = 4!" crlf))

This rule will NOT fire just because the function call (eq (+ 2 2) 4) would evaluate to true. Instead, Jess will try to find a fact on the fact-list that looks like (eq 4 4). Unless you have previously asserted such a fact, this rule will NOT be activated and will not fire. If you want to fire a rule based on the evaluation of a function, you can use the test CE.

An activated rule may become deactivated before firing if the facts that matched its patterns are retracted, or removed from the fact list, while it is waiting to be fired. Here is an example of a simple rule:

 (defrule example-1

 "Announce 'a b c' facts"

 (a b c)

 =>

 (printout t "Saw 'a b c'!" crlf))

To see this rule in action, enter it at the Jess> prompt, assert the fact (a b c), then the run command to start the Jess engine. You'll get some interesting additional information by first issuing the watch all command:

 Jess> (clear)

 TRUE

 Jess> (watch all)

 TRUE

 Jess> (defrule example-1

 "Announce 'a b c' facts"

 (a b c)

 =>

 (printout t "Saw 'a b c'!" crlf))

 example-1: +1+1+1+1+t

 TRUE

 Jess> (assert (a b c))

 ==> Activation: example-1 : f-0

 ==> (a b c)

 <Fact-0>

 Jess> (run)

 FIRE example-1 f-0

 Saw 'a b c'!

 TRUE

 Jess>

When you enter the rule, you see the sequence of symbols +1+1+1+1+t. This tells you something about the way that Jess compiled the rule you wrote into the internal rule representation. Then when you assert the fact, Jess responds by telling you that the new fact was assigned the numeric fact identifier 0 (f-0), and that it is an ordered fact with head a and additional fields b and c. Then it tells you that the rule example-1 is activated by the fact f-0, that fact you just entered. When you type the run command, you see an indication that your rule has been fired, including a list of the relevant fact IDs. The line "Saw 'a b c'!" is the result the execution of your rule.

Multiple activated rules are fired in order of salience (see Salience). Within a given salience value, the order in which rules will fire is given by the current conflict resolution strategy. See the set-strategy command for details. You can see the list of activated, but not yet fired, rules with the command.

If all the patterns of a rule had to be given literally as above, Jess would not be very powerful. However, patterns can also include wildcards and various kinds of predicates (comparisons and boolean functions). You can specify a variable name instead of a value for a field in any of a rule's patterns (but not the pattern's head). A variable matches any value in that position within a rule. For example, the rule:

 (defrule example-2

 (a ?x ?y)

 =>

 (printout t "Saw 'a " ?x " " ?y "'" crlf))

will be activated each time any fact with head a having two fields is asserted: (a b c), (a 1 2), (a a a), and so forth. As in the example, the variables thus matched in the patterns (or LHS) of a rule are available in the actions (RHS) of the same rule.

Each such variable field in a pattern can also include any number of tests to qualify what it will match. Tests follow the variable name and are separated from it and from each other by ampersands. (The variable name itself is actually optional.) Tests can be:

· A literal value (in which case the variable matches only that value).

· Another variable (which must have been matched earlier in the rule's LHS). This will constrain the field to contain the same value as the variable was first bound to.

· A colon (:) followed by a function call, in which case the test succeeds if the function returns the special value TRUE. These are called predicate constraints.

· An equals sign (=) followed by a function call. In this case the field must match the return value of the function call. These are called return value constraints. Note that both predicate constraints and return-value constraints can refer to variables bound elsewhere in this or any preceding pattern in the same defrule. Note: pretty-printing a rule containing a return value contstraint will show that it has been transformed into an equivalent predicate constraint.

· Any of the other options preceded by a tilde (~), in which case the sense of the test is reversed (inequality or false).

Here's an example of a rule that uses several kinds of tests:

 (defrule example-3

 (not-b-and-c ?n1&~b ?n2&~c)

 (different ?d1 ?d2&~?d1)

 (same ?s ?s)

 (more-than-one-hundred ?m&:(> ?m 100))

 =>

 (printout t "Found what I wanted!" crlf))

The first pattern will match a fact with head not-b-and-c with exactly two fields such that the first is not b and the second is not c. The second pattern will match any fact with head different and two fields such that the two fields have different values. The third pattern will match a fact with head same and two fields with identical values. The last pattern matches a fact with head more-than-one-hundred and a single field with a numeric value greater than 100.

A few more details about patterns: you can match a field without binding it to a variable by omitting the variable name and using just a question mark (?) as a placeholder. You can match any number of fields using a multivariable (one starting with $?):

 Jess> (defrule example-4

 (grocery-list $?list)

 =>

 (printout t "I need to buy " $?list crlf))

 TRUE

 Jess> (assert (grocery-list eggs milk bacon))

 TRUE

 Jess> (run)

 I need to buy (eggs milk bacon)

 TRUE
And finally, to access a global variable on the left-hand side of a rule, you must use the get-var function.

Pattern bindings.

Sometimes you need a handle to an actual fact that helped to activate a rule. For example, when the rule fires, you may need to retract or modify the fact. To do this, you use a pattern-binding variable:

 (defrule example-5

 ?fact <- (command "retract me")

 =>

 (retract ?fact))

The variable (?fact, in this case) is assigned the fact ID of the particular fact that activated the rule.

Salience.

Rules normally fire in an order related to which rules were most recently activated. See the set-strategy command for details. To force certain rules to always fire first or last, rules can include a salience declaration:

 (defrule example-6

 (declare (salience -100))

 (command exit-when-idle)

 =>

 (printout t "exiting..." crlf))

Declaring a low salience value for a rule makes it fire after all other rules of higher salience. A high value makes a rule fire before all rules of lower salience. The default salience value is zero. Salience values can be integers, global variables, or function calls. See the set-salience-evaluation command for details about when such function calls will be evaluated.

Not patterns.

A pattern can be enclosed in a list with not as the head. In this case, the pattern is considered to match if a fact which matches the pattern is not found. For example:

 (defrule example-7

 (person ?x)

 (not (married ?x))

 =>

 (printout t ?x " is not married!" crlf))

Note that a not pattern cannot contain any variables that are not bound before that pattern (since a not pattern does not match any facts, it cannot be used to define the values of any variables!) You can use blank variables, however (a blank variable is a bare ? or $?). A not pattern can similarly not have a pattern binding.

The test conditional element (CE).

A pattern with test as the head is special; the body consists not of slot tests but of a single function which is evaluated and whose truth determines whether the pattern matches. For example:

 (defrule example-8

 (person (age ?x))

 (test (> ?x 30))

 =>

 (printout t ?x " is over 30!" crlf))

Note that a test pattern, like a not, cannot contain any variables that are not bound before that pattern. test and not may be combined:

 (not (test (eq ?X 3)))

is equivalent to:

 (test (neq ?X 3))

The unique conditional element.

A pattern can be enclosed in a list with unique as the head. This is a hint to Jess that only one fact could possibly satisfy a given pattern, given matches for the preceding patterns in that rule. Here's an example:

(defrule unique-demo

 (tax-form (social-security-number ?num))

 (unique (person (social-security-number ?num) (name ?name)))

 =>

 (printout t "Auditing " ?name "..." crlf))

Here the unique CE is providing a hint to Jess that only one person can have a given Social Security number. Given this knowledge, Jess knows that once it has found the person that matches a given tax form, it doesn't need to look any further. In practice, this can result in performance gains of 20-30% on real problems!

unique may not be combined in the same patten with either test or not CEs.

unique was new in Jess 4.1, and is my own invention. I'm interested in hearing any feedback related to this feature.

Defglobals

Jess can support global variables that are visible from the command-prompt or inside any rule or deffunction. You can define them using the defglobal construct:

 (defglobal

 [<varname1> = <value1>]*)

Note that defglobals are reset to their assigned values by the (reset) command. If the <value> is a function call, this function will be evaluated each time (reset) is called. You can change this behaviour with the set-reset-globals command.

Error Reporting and Debugging

When you get an error from Jess (during parsing or at runtime) it is generally delivered as a Java exception. The exception will contain an explanation of the problem and the stack trace of the exception will help you understand what went wrong. For this reason, it is very important that, if you're embedding Jess in a Java application, you don't write code like this:

 try

 {

 Rete engine;

 ...

 engine.executeCommand("(gibberish!)");

 }

 catch (ReteException re) { /* ignore errors */ }

If you ignore the Java exceptions, you will miss Jess's explanations of what's wrong with your code. Don't laugh - more people code this way than you'd think!

Anyway, if you attempt to load the folowing rule in the standard Jess command-line executable,

 Jess> (defrule foo-1

 (foo bar)

 ->

 (printout "Found Foo Bar" crlf))

You'll get the following printout:

 Rete Exception in routine Jesp::parseDefrule.

 Message: Expected '=>' at line 2: (defrule foo-1 (foo bar) -> .

 at jess.Jesp.parseError(Compiled Code)

 at jess.Jesp.doParseDefrule(Compiled Code)

 at jess.Jesp.parseDefrule(Compiled Code)

 at jess.Jesp.parseSexp(Compiled Code)

 at jess.Jesp.parse(Compiled Code)

 at jess.Main.main(Compiled Code)

Looking at the routine names listed in the stack trace make it fairly clear that a defrule was being parsed, and the detail message explains that the position of the . was reached in the input without finding the expected => symbol (we accidentally typed -> instead).

Runtime errors can be more puzzling, but the stack trace will give you a lot of information. Here's a rule where we erroneously try to add the number 3.0 to the word four:

 Jess> (defrule foo-2

 =>

 (printout t (+ 3.0 four) crlf))

When we (reset) and (run) we'll see:

 Rete Exception in routine Value::intValue while executing defrule foo-2.

 Message: Not a number: four type = 1 at line 8: (run) .

 at jess.Value.typeError(Compiled Code)

 at jess.Value.numericValue(Compiled Code)

 at jess.Plus.call(Compiled Code)

 at jess.Funcall.simpleExecute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Defrule.fire(Compiled Code)

 at jess.Activation.fire(Compiled Code)

 at jess.Rete.run(Compiled Code)

 at jess.Rete.run(Compiled Code)

 at jess.HaltEtc.call(Compiled Code)

 at jess.Funcall.simpleExecute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Jesp.parseAndExecuteFuncall(Compiled Code)

 at jess.Jesp.parseSexp(Compiled Code)

 at jess.Jesp.parse(Compiled Code)

 at jess.Main.main(Compiled Code)

In this case, the error message is pretty clear except for the claim that the offending statement is run. To find out what was really happening, we have to look at the stack trace. Starting from the top down, we find Value.numericValue() was called by Plus.call(). A few levels down, we see Defrule.fire(). Taken together, this means that an addition operation on the RHS of the rule foo-2 (from the first line of the trace) found the symbol four as one of its operands when it expected a number.

The notation type = 1 in the error message, by the way, refers to a set of constants in the class jess.RU. The values of these constants are presented in section 5.4.1, The class jess.Value. Consulting that table, we see that type 1 is RU.ATOM, a symbol, which is indeed not a number.

If we make a similar mistake on the LHS of a rule:

 Jess> (defrule foo-3

 (test (eq 3 (+ 2 one)))

 =>

)

We see the following after a reset:

 Rete Exception in routine Value::intValue while executing 'test' CE:

 [NodeTest ntests=1 [Test1: test=EQ;slot_idx=3;sub_idx=-1;

 slot_value=eq 3 + 2 one] ;usecount = 1].

 Message: Not a number: one type = 1 at line 11: (reset) .

 at jess.Value.typeError(Compiled Code)

 at jess.Value.numericValue(Compiled Code)

 at jess.Plus.call(Compiled Code)

 at jess.Funcall.simpleExecute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.Funcall.execute(Compiled Code)

 at jess.NodeTest.runTests(Compiled Code)

 at jess.NodeTest.callNode(Compiled Code)

 at jess.Node.passAlong(Compiled Code)

 at jess.Node1TELN.callNode(Compiled Code)

 at jess.Node.passAlong(Compiled Code)

 at jess.Node1TECT.callNode(Compiled Code)

 at jess.Rete.processTokenOneNode(Compiled Code)

 at jess.Rete.updateNodes(Compiled Code)

 at jess.ReteCompiler.addRule(Compiled Code)

 at jess.Rete.addDefrule(Compiled Code)

 at jess.Jesp.doParseDefrule(Compiled Code)

 at jess.Jesp.parseDefrule(Compiled Code)

 at jess.Jesp.parseSexp(Compiled Code)

 at jess.Jesp.parse(Compiled Code)

 at jess.Main.main(Compiled Code)

Again, the error message is somewhat but not completely helpful (it says the error was in the function reset, but it also says that a (test) CE was being executed, and it prints out a stylized version of the test CE itself) and the stack trace contains additional information. Here we see our old friends Value.numericValue() and Plus.call() being called, but we don't see the Defrule being fired. Instead we see lots of oddly named classes and functions with names containing Node and Token. This is always a tip-off that the error happened on Defrule LHS processing, as are both the fact that the error happened during a reset and the message at the top of the trace. Way down the stack we see Rete.assert() being called by Rete.reset(), which also indicates that LHS processing was in progress when the exception happened.

The funny string starting with [NodeTest ntests=1; ... is Jess's internal representation for a single node in the Rete network that encodes the test CE from the rule above. Looking at it, you can see that it includes the function call (+ 2 one), which should help you track it down. Note that in this case, Jess can't tell you which rule this node belongs to, as it theoretically could be shared by several rules (see How Jess Works for details.)

Calling Java Methods

The Jess call function lets you call Java methods. The first argument to call is either a variable holding the Java object on which to call the method, or the name of the class (for a static method.) The second argument is the name of the method. The remaining arguments are the arguments to the method. Jess will find an appropriate method using the same techniques described in Creating Java Objects.

An example: to use the void java.lang.StringBuffer.append(String s) method directly, you can write:

 (defglobal ?*str-buf* = (new java.lang.StringBuffer 100))

 (call ?*str-buf* append "Some String Data To Append")

Note that in many cases, explicit use of the call functor is optional; it can be omitted in function calls that are not nested inside of other function calls. For example, the above call to append could also be written as:

 (?*str-buf* append "Some String Data To Append")

A static method example: you can invoke the Java garbage collector using the java.lang.System.gc() method like this:

 (call java.lang.System gc)

Implementation of RobbieNG

In this chapter the javaconnection to Jess will be shown. You can see the source of I_Oject and the JessEngine below.

I_Object

/**

 * Sourcefile: I_Object.java

 * Author : Sander Hartogensis & Rik de Groot & Sebastiaan Overdijk

 * Copyright : 1999, RobbieNG Project Team

 * Date : 19 maart 1999

 * Changed : 25 maart 1999

 */

import java.util.*;

/**

 * Ik ben I_Object, afko van intelligent object Ik ben een abstracte

 * klasse.Ik ben de vertegenwoordiger van een intelligente eenheid,

 * bijvoorbeeld de intelligent collision-detector, of intelligent

 * driver. Ik ben observable. Objecten zich als geinteresseerde hebben

 * aangemeld kan ik berichten sturen.

 */

public abstract class I_Object extends Observable implements Observer {

 /** Ik verwijs naar de JessEngineAdapter */

 private JessEngineAdapter jessEngineAdapter;

 /** I_Object() is de constructor.*/

 public I_Object() {

 }

 /**

 *iHaveChanged(String message) kan door een van de objecten uit mijn

 * intelligente eenheid worden aangeroepen om een bericht naar mijn

 * geinteresseerden te sturen.

 */

 public void iHaveChanged(String message) {

 this.setChanged();

 this.notifyObservers(message);

 }

 /**

 * Ik zet de jessengineadapter

 */

 public void setJessEngineAdapter(JessEngineAdapter jea)

 {

this.jessEngineAdapter = jea;

 }

 /**

 * I give the jessengineadapter

 */

 public JessEngineAdapter getJessEngineAdapter()

 {

return this.jessEngineAdapter;

 }

 /**

 * Ik meld de JessEngineAdapter dat ik veranderd ben.

 */

 public void update(Observable obs, Object arg)

 {

 this.getJessEngineAdapter().update(arg);

 }

}

JessEngine

/**

 * Sourcefile: JessEngine.java

 * Author : Sander Hartogensis & Rik de Groot & Sebastiaan Overdijk

 * Copyright : 1999, RobbieNG Project Team

 * Date : 19 maart 1999

 * Changed : 25 maart 1999

 */

import java.lang.*;

import java.io.*;

import jess.*;

/**

 * Ik am a Jess inference Engine. I evaluate rules.

 */

class JessEngine extends Rete

{

 /**

 * I am the constructor and I read and parse arule file.

 */

 JessEngine(String KBFileName) throws IOException, ReteException

 {

 super(new NullDisplay());

 this.loadPackages();

 this.parseKBintoJessEngine(KBFileName);

 executeCommand("(reset)");

 }

 /**

 * I set a fact

 */

 public void assert(String fact) throws ReteException

 { executeCommand("(assert (" + fact +"))");

 }

 /**

 * I load the necessary packages

 */

 private void loadPackages()

 {

 String [] packages = { "jess.StringFunctions",

 "jess.PredFunctions",

 "jess.MultiFunctions",

 "jess.MiscFunctions",

 "jess.MathFunctions",

 "jess.BagFunctions",

 "jess.reflect.ReflectFunctions",

 "jess.view.ViewFunctions" };

 for(int i=0; i < packages.length; i++)

 {

 try

 {

 addUserpackage((Userpackage) Class.forName(packages[i]).

newInstance());

 }

 catch (Throwable t)

 {

 }

 }

 }

 /**

 * I read the rule file and parse this one in the JessEngine

 */

 private void parseKBintoJessEngine(String KBFileName) throws

IOException, ReteException

 {

 // Create a parser for the file, telling it where to take input

 // from and which engine to send the results to

 FileInputStream fis = new FileInputStream(KBFileName);

 Jesp j = new Jesp(fis, this);

 do

 { // parse and execute one construct, without printing a prompt

 j.parse(false);

 } while (fis.available() > 0);

 }

 /**

 * Ik zorg er voor dat een object van de robot bekend

 * wordt bij de JessEngine rules.

 */

 public void addObjectToJessEngine(Object obj, String name)

 {

 try

 { this.executeCommand("(defglobal ?*" + name + "* = 0)");

 this.executeCommand("(set-reset-globals FALSE)");

 Funcall funcall = new Funcall("bind", this);

 funcall.add(new Value("*" + name + "*", RU.VARIABLE));

 funcall.add(new Value(obj, RU.EXTERNAL_ADDRESS));

 funcall.simpleExecute(funcall, this.globalContext());

 }

 catch (Throwable t)

 { System.out.println(t);

 }

 }

 /**

 * Ik zorg er voor dat een string bekend

 * wordt bij de JessEngine rules.

 */

 public void addStringToJessEngine(String value, String name)

 {

 try

 { this.executeCommand("(defglobal ?*" + name + "* = 0)");

 this.executeCommand("(set-reset-globals FALSE)");

 Funcall funcall = new Funcall("bind", this);

 funcall.add(new Value("*" + name + "*", RU.VARIABLE));

 funcall.add(new Value(value, RU.STRING));

 funcall.simpleExecute(funcall, this.globalContext());

 }

 catch (Throwable t)

 { System.out.println(t);

 }

 }

}

Technical problems

During the project we experienced several (difficult) problems. Some of the problems are listed below, something with the solution we used to solve it.

Description of the problem
Solution (if applicable)

Stream Corrupted Exception:

Occurs occasionally when messages between robots are exchanged.
None (yet).

Wrong collision side:

Detecting on which side of the robot a collision occurred was wrong.
The problem was caused by a coordinate move-ment at the wrong place. We replaced the code to the appropriate class.

Logical View

ThrustSimulation

Private Attributes:

worldConnection : WorldConnection

degreesTurned : int

distanceMoved : int

Public Operations:

turnedLeft (degrees : int) :

turnedRight (degrees : int) :

movedForward (distance : int) :

movedBackward (distance : int) :

goForward (distance : int) :

goBackward (distance : int) :

turnLeft (degrees : int) :

turnRight (degrees : int) :

getWorldConnection () : WolrdConnection

setWorldConnection (WorldConnection aWorldConnection :) :

CollisionDetectorSimulation

Public Operations:

collision () :

WorldKnowledge

Private Attributes:

robotPosition : TPoint

Public Operations:

getRobotPosition () : TPoint

setRobotPosition (TPoint position :) :

World

Private Attributes:

referencePoint : TPoint

worldObjects : Vector

height : int

width : int

Public Operations:

isCollision (worldObject : WorldObject) : boolean

addWorldObject (worldObject : WorldObject) :

getRobotWorldObject (robotSimulation : RobotSimulation) : RobotWorldObject

removeWorldObject (worldObject : WorldObject) :

removeWorldObject (int aIndex :) :

World (int aWidth : , int aHeight : , int aReferenceX : , int aReferenceY :) :

getHeight () : int

setHeight (int aHeight :) :

getWidth () :

setWidth (int aWidth :) :

setWorldObjects (Vector aWorldObjects :) :

getWorldObjects () : Vector

setMessageParser (MessageParser aMessageParser :) :

getMessageParser () :

getReferencePoint () :

setReferencePoint (TPoint aTPoint :) :

changed () :

existingRobotName (String aName :) : boolean

loadWorld (String aFileName :) :

saveWorld (String aFileName :) :

newWorld () :

WorldSimulation

Private Attributes:

worldAdapter : WorldAdapter

Public Operations:

WorldSimulation () :

setWorldGUI (WorldGUI aWorldGUI :) :

getWorldGUI () : WorldGUI

setWorld (World aWorld :) :

getWorld () : World

setWorldAdapter (WorldAdapter aWorldAdapter :) :

getWorldAdapter () : WorldAdapter

WorldGUI

Private Attributes:

worldAdapter : WorldAdapter

offScreenImage : Image

offScreenImageGraphics : Graphics

width : int

height : int

userObjects : List

robotNames : List

Public Operations:

update () :

degreesToRadials (aDegree : int) : float

WorldGUI () :

addObject (TPoint aPoint :) :

removeObject (TPoint p :) :

paint (Graphics g :) :

update (Graphics g :) :

setWorldAdapter (WorldAdapter wa :) :

getWorldAdapter () : WorldAdapter

setOffScreenImage (Image aOffScreenImage :) :

getOffScreenImage () : Image

setOffScreenImageGraphics (Graphics aOffScreenImageGraphics :) :

getOffScreenImageGraphics () : Graphics

setWidth (int aWidth :) :

getWidth () : int

setUserObjects (List aUserObjects :) :

getUserObjects () : List

setHeight (int aHeight :) :

getHeight () : int

WorldObject

Private Attributes:

position : TPoint

direction : int

width : int

length : int

shape : int

color : Color

messageParser : MessageParser

Public Operations:

getPosition () : TPoint

atPosition (worldObject : WorldObject) :

setPosition (position : TPoint) :

setDirection (direction : int) :

setLength (length : int) :

getLength () : int

getDirection () : int

setWidth (width : int) :

getWidth () : int

collision () :

setColor () :

getColor () : Color

setShape () :

getShape () : Shape

setWorld () :

getWorld () : World

setMessageParser () :

getMessageParser () : MessageParser

processCollision () :

RobotWorldObject

Derived from WorldObject

Private Attributes:

socket : Socket

name : String

leftCollision : boolean

rightCollision : boolean

Public Operations:

goForward (distance : int) : TPoint

goBackward (distance : int) :

turnLeft (degrees : int) :

turnRight (degrees : int) :

RobotWorldObject () : RobotWorldObject

run () :

getSocket () : Socket

setSocket (Socket aSocket :) :

getName () : String

setName (String name :) :

goRight () :

goLeft () :

setLeftCollision (boolean aCollision :) :

getLeftCollision () : boolean

setRightCollision (boolean aCollision :) :

getRightCollision () : boolean

FoodWorldObject

Derived from WorldObject

Private Attributes:

quantity : int

Public Operations:

getQuantity () : int

setQuantity (quantity : int) :

eat (quantity : int) :

WallWorldObject

Derived from WorldObject

Public Operations:

WallWorldObject () :

Robot

Public Operations:

Robot (Thrust aThrust : , CollisionDetector[] collisionDetectors : , String hostName : , String role : , RobotSimulation robotSimulation :) :

setThrust (Thrust aThrust :) :

getThrust () : Thrust

setI_Thrust (I_Thrust thrust :) :

getI_Thrust () : I_Thrust

setI_Robot (I_Robot robot :) :

getI_Robot () : I_Robot

setI_CollisionIdentification (I_CollisionIdentification collisionIdentification :) :

getI_CollisionIdentification () :

setI_Driver (I_Driver driver :) :

getI_Driver () : I_Driver

setI_Prey (I_Prey prey :) :

getI_Prey () :

setI_Hunter (I_Hunter hunter :) :

getI_Hunter () : I_Hunter

getCollisionDetector (int index :) :

setCollisionDetector (int index : , CollisionDetector collisionDetector :) :

setCollisionDetectors (CollisionDetector[] collisionDetectors :) :

CollisionDetector

Public Operations:

collision () :

Thrust

Private Attributes:

amStopped : boolean

movingState : String

Public Operations:

goForward (distance : int) :

goBackward (distance : int) :

turnLeft (degrees : int) :

turnRight (degrees : int) :

stop () :

engineBroke () :

engineStuck () :

setAmStopped (boolean amStopped :) :

getAmStopped () : boolean

setMovingState (String movingState :) :

getMovingState () : String

WorldConnection

Private Attributes:

worldSocket : Socket

robotSimulation : RobotSimulation

serverAddress : InetAddress

serverPort : int

worldConnectionReceiver : WorldConnectionReceiver

outputStream : DataOutputStream

inputStream : DataInputStream

Public Operations:

connectToWorld (InetAddress aServerAddress : , int aServerPort :) :

setRobotSimulation (robotSimulation : RobotSimulation) :

getRobotSimulation () : RobotSimulation

WorldConnection (RobotSimulation aRobotSimulation :) :

sendMessage (message : String) :

receiveMessage (message : String) :

resolveWorldIPAddress () : InetAddress

setWorldConnectionReceiver (WorldConnectionReceiver :) :

getWorldConnectionReceiver () : WorldConnectionReceiver

getInputStream () : DataInputStream

setInputStream (DataInputStream aInputStream :) :

getOutputStream () : DataOutputStream

setOutputStream (DataOutputStream aOutputStream :) :

getServerAddress () : InetAddress

setServerAddress (InetAddress aServerAddress :) :

getServerPort () : int

setServerPort (int aServerPort :) :

MessageParser

Private Attributes:

worldSocket : ServerSocket

worldIPAddressProviderThread :

receiveThread : Thread

Public Operations:

removeRobotFromWorld (name : String, address : InetAddress, portWorld : int, portRobot : int) :

MessageParser () :

getRobotCommunicationSim () : RobotCommunicationSim

setRobotCommunicationSim (robotCommunicationSim : RobotCommunicationSim) :

getServerSocket () : ServerSocket

setServerSocket (socket : ServerSocket) :

sendMessage (Socket aSocket : , String aMessage :) :

receiveMessage (Socket aSocket : , String aMessage :) :

setWorld (World aWorld :) :

getWorld () : World

setReceiveThread (Thread aReceiveThread :) :

getReceiveThread () : Thread

setWorldIPAddressProviderThread (Thread aProvider :) :

getWorldIPAddressProviderThread () : Thread

Private Operations:

addRobotToWorld (name : String, address : InetAddress, portWorld : int, portRobot : int) :

CommunicationPackage

Private Attributes:

port : int

Public Operations:

CommunicationPackage () :

getReceivePort () :

RobotCommunicationSim

Private Attributes:

robotSocket : DatagramSocket

repliers : Vector

sHandler : SubscriptionHandler

rHandler : RequestHandler

Public Operations:

RobotCommunicationSim () :

update (Observable obs : , Object object :) :

RobotToWorldConnection

Public Operations:

sendMessage (message : String) :

receiveMessage (message : String) :

getWorldSocket () : Socket

setWorldSocket (socket : Socket) :

RobotSimulation

Private Attributes:

worldConnection : WorldConnection

myName : String

Public Operations:

getWorldConnection () : WorldConnection

setWorldConnection (wc : WorldConnection) :

setThrustSimulation (thrustSimulation : ThrustSimulation) :

getThrustSimulation () : ThrustSimulation

getCollisionDetectorSimulation () : CollisionDetectorSimulation

setCollisionDetectorSimulation (collisionDetectorSimulation : CollisionDetectorSimulation) :

getName () : String

setName (myName : String) :

Shape

Private Attributes:

Rectangle :

Circle :

Triangle :

NoShape :

Public Operations:

degreesToRadials (int aDegrees :) : float

getRectanglePolygon (WorldObject aWorldObject :) : Polygon

getTrianglePolygon (WorldObject aWorldObject :) : Polygon

� EMBED PBrush ���

© Projectteam

Page 5 of 1

_989917527

